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Abstract
We introduce the notion of a task-oriented maximally entangled state (TMES).
This notion depends on the task for which a quantum state is used as the
resource. TMESs are the states that can be used to carry out the task
maximally. This concept may be more useful than that of a general maximally
entangled state in the case of a multipartite system. We illustrate this idea by
giving an operational definition of maximally entangled states on the basis of
communication tasks of teleportation and superdense coding. We also give
examples and a procedure to obtain such TMESs for n-qubit systems.

PACS numbers: 03.65.Ud, 03.67.Ac

1. Introduction

One of the greatest mysteries of quantum mechanics is the concept of entanglement. Ever since
this idea was introduced by Schrödinger in 1935 [1], it has helped in unraveling the mystique
of quantum mechanics. The entanglement of a quantum state of a system also allows us
to carry out tasks, which would not be possible with a classical system. The entanglement
properties of the quantum states are also responsible for the innate nonlocality [2] of the
quantum mechanical framework. Although this idea is quite old, it is surprising that one still
does not understand fully the entanglement properties of a tripartite system in a pure state,
or even a bipartite system in a mixed state [3]. The proper characterization, quantification
and classification of the entanglement properties of a multipartite system1 is still a developing
field. In this paper, we focus on systems in pure states.

A bipartite system in a pure state is the simplest system to examine and explore the
entanglement properties. The nature of entanglement of such a system is well understood.
Such a system has only one bipartite quantum correlation which can be characterized and
quantified by the von Neumann entropy (or some other equivalent measure) [3, 4]. It is a
suitable entanglement measure [5, 6] for such states. This measure maps a bipartite state to a
real number. One can order the states according to von Neumann entropy.

1 We categorize the systems into bipartite and multipartite. By a multipartite system we mean a system that consists
of more than two subsystems.
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Because of the existence of a suitable entanglement measure, there exists the concept of
a maximally entangled state. This concept is well defined for bipartite systems which are
in pure states and is independent of the entanglement measure. The measure von Neumann
entropy is 0 for the unentangled systems and 1 for the maximally entangled systems. The
states of the maximally entangled bipartite systems are Bell states which are given below in
(1) and (2). Beyond a bipartite system, there is no consensus about what states might be
considered maximally entangled. There are numerous suggestions [3] to characterize and
quantify the entanglement features of a multipartite state. Some of these measures are quite
difficult to compute and it is not clear if they satisfy the criteria to be a suitable measure
[5, 6]. Without a suitable measure, what may be a maximally entangled state is not very clear.
On the other hand, if one could identify the set of maximally entangled states, it could help in
better understanding and classification of the multipartite entangled states.

In the literature, numerous attempts have been made to identify the maximally entangled
state [7]. In this paper, we take a different approach to identify a maximally entangled state.
In this approach, there may not exist an analog of Bell states for multipartite systems (indeed
such a search may not be very useful). We suggest that for a multipartite system this notion
may not be universal. There may exist global maxima relative to a specific entanglement
measure, but the state with such a property may not be suitable for most tasks that one may
envision. Therefore, we introduce the notion of a task-oriented maximally entangled state
(TMES). TMESs are those states that may be suitable to carry out a specific task maximally.
For different tasks, one may need different TMESs. A task can be Bell inequalities or
some equalities which use the correlations of a quantum state or some communication or
processing of information. Some of the communication-based tasks are teleportation [8],
superdense coding [9], multi-receiver superdense coding [10], quantum cryptography [11],
secret sharing [12], telecloning [13], etc. We present the concept of TMES by giving a
definition of maximally entangled states on the basis of communication tasks of teleportation
[8] and superdense coding [9]. A quantum state might be considered maximally entangled
on the basis of resources available to these communication protocols. In this case, a TMES
is the one which can help us to carry out the tasks of teleportation and superdense coding
maximally. We can define maximality of these tasks as follows. For the maximal teleportation,
an n-qubit state would allow us to teleport an unknown arbitrary n

2 -qubit state when n is even
and (n−1)

2 -qubit state when n is odd. For maximal superdense coding, an n-qubit state would
allow us to transmit n classical bits (cbits) of information by sending n

2 qubits when n is even
and (n+1)

2 qubits when n is odd2. For example, when n = 4, the quadripartite GHZ state (given
below in (3)) is not a TMES because one cannot teleport an unknown arbitrary two-qubit
state. Furthermore, although one can transmit two cbits by sending one qubit and three cbits
by sending two qubits, one cannot transmit four cbits by sending two qubits from Alice to
Bob [10]. Therefore, this quadripartite state is not suitable for the maximal teleportation or
maximal superdense coding.

It is not surprising that a suitable entanglement measure, e.g. von Neumann entropy,
exists for bipartite states, since such states have only one bipartite correlation. However, in
the case of a multipartite entangled state, there exist multiple bipartite, tripartite and higher
correlations. Therefore, one number may not be suitable to characterize such states. One may
need a set of numbers to characterize such states. Another way to look at this could be the
following. All bipartite states can be characterized by just one parameter up to unary unitary

2 There is an alternate way to define maximal superdense coding. Here the definition remains the same for even
number of qubits. In the case of odd number of qubits, n − 1 cbits are transmitted by sending

(
n−1

2

)
qubits. If we

adopt this definition, then all the states that can do maximal teleportation can also do maximal superdense coding.
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transformation equivalency. However, one needs more than one parameter to characterize a
multipartite state. As an example, one needs six such real parameters to characterize a three-
qubit state [14]. It would appear to be unlikely that the complexity and richness of the state of
a multipartite system could be captured by just one number which would characterize the state
as an entanglement measure. One may need a set of numbers, a vector measure, to capture
the multifaceted entanglement properties of such states. Therefore, if we insist on finding an
ordered list of multipartite entangled states, then it would depend on the correlations one is
probing. In particular, there can be a number of different orderings which would depend on
the task that we wish to perform using these states. Different tasks would depend on different
quantum correlations which need to be maximal for that task. This naturally leads to the idea
of TMESs.

2. TMESs for even number of qubits

For a two-qubit system, the TMESs are well known. These are Bell states:

|ϕ±〉 = 1√
2
(|00〉 ± |11〉) (1)

|ψ±〉 = 1√
2
(|01〉 ± |10〉). (2)

Using these states, one can carry out the conventional teleportation and superdense
coding. One can teleport one-qubit state perfectly. One can also transmit two cbits by
sending one qubit. Therefore, with Alice and Bob one qubit each, both protocols can be
carried out maximally. Alice can convert these states into one another by applying unitary
transformations {σ0, σ1, iσ2, σ3} on her qubit. Here σ0 is a 2×2 unit matrix, and σ1, σ2, σ3 are
Pauli matrices. As a point of interest, these Bell states can be obtained from the product states
{|+〉|0〉, |−〉|0〉, |+〉|1〉, |−〉|1〉} by applying the CNOT unitary operator UCN. As this operator
acts on two qubits, it can entangle them.

Let us now consider the case of larger number of qubits. Before considering a general
n-qubit state, let us discuss the case of four-qubit states. There are a number of explicit states
that have proposed as the maximally entangled state, as they seem to have some properties
that may be desirable in a maximally entangled state. Some of these states are the GHZ state
[15] , cluster state [16, 17], χ -state [18] and H-S state [19]:

|GHZ〉 = 1√
2
(|0000〉 + |1111〉) (3)

|�〉 = 1
2 (|0000〉 + |0110〉 + |1001〉 − |1111〉) (4)

|χ〉 = 1
2
√

2
(|0000〉 − |0011〉 − |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉 + |1111〉) (5)

|HS〉 = 1√
6
(|0011〉 + |1100〉 + ω(|1010〉 + |0101〉) + ω2(|1001〉 + |0110〉)). (6)

Here ω = e
2π i
3 . We would note that these are prototype states. By applying appropriate

multi-unary3 unitary transformations we can construct orthogonal states which would serve
the same purpose. It is just like obtaining four Bell states from any one of the Bell states by
applying appropriate unary unitary transformations. These multi-unary transformations, by

3 The unary transformations act on only one qubit. The multi-unary transformations act separately on qubits of a
multi-qubit system; they are direct product of unary transformations. The multinary transformations act on multiple
qubits at the same time. These are entangled transformations. They can change the entanglement properties of the
system.
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definition, act on qubits separately. There are various arguments that have been put forward to
support the case of each state. Some of these are as follows. The GHZ state has all one-qubits
in a completely mixed state. The |�〉 state shows certain features of entanglement which are
persistent. The |χ〉 state can be used for what we call maximal teleportation and superdense
coding. The |HS〉 state has maximized two-qubit correlations. As we shall see later, these
states can be TMESs, but for different tasks. But let us first construct TMESs for the tasks of
teleportation and superdense coding.

In the case of an even number of qubits, say 2d, one can teleport at most an arbitrary
unknown d-qubit state. The easiest way to do it is to use d Bell states. Then each qubit of the
d-qubit state can be teleported using one of the Bell states. This means that for a larger number
of qubits, one could take a direct product of Bell states as the quantum resource. However,
as these resource states are not genuinely multipartite entangled states, this resource is not
very interesting. However, it turns out that by a multinary4 unitary transformation, one could
convert these unentangled states into entangled states. Since the teleportation protocol is not
affected by these unitary transformations, these states with genuine multipartite entanglement
also serve the purpose of teleporting a d-qubit state. We can see this as follows. Suppose
we wish to teleport an arbitrary unknown n-qubit state |ψ〉 using the m-qubit state |R〉 as a
quantum resource (m � 2n). If the teleportation is successful, then we would be able to write

|ψ〉a1a2·····an
|R〉b1b2·····bm

= 1

2n

22n∑
i=1

|Oi〉a1a2·····anb1b2····bm−n
V i †

bm−n+1bm−n+2····bm
|ψ〉bm−n+1bm−n+2····bm

.

(7)

Here subscripts are particle labels. |Oi〉 are a set of orthogonal states and Vi are unitary
operators. Alice would need to send 2n cbits of information to Bob to teleport an n-qubit state.
If we apply a unitary transformation Ia1a2······an

⊗ Ub1········bm−n
to both sides of the equation,

then this transformation would convert the set of orthogonal states |Oi〉 to another such set.
So the teleportation would still be possible, but with a different quantum resource state,
Ub1········bm−n

|R〉b1b2·····bm
. Therefore, if we know a quantum resource state (e.g. a product of Bell

states) that would allow the teleportation of an arbitrary unknown n-qubit state, then we can
find another resource state by applying appropriate unitary transformation to it [21]. Alice can
apply this unitary transformation. (Instead of Alice, Bob can also do it.) Interestingly, these
entangled states can also be used for maximal superdense coding for an even number of qubits.
This may not be surprising because of the close relationship between the two tasks. From the
procedure, it is also clear that if a resource state can be used to teleport an n-qubit state, it can
also be used to teleport any p-qubit state such that p < n. We illustrate the procedure for the
four-qubit systems.

With a four-qubit entangled state, maximal teleportation will be that of an arbitrary and
unknown two-qubit state:

|ψ〉ab = α|00〉ab + β|01〉ab + γ |10〉ab + δ|11〉ab. (8)

Here α, β, γ and δ are complex numbers. As noted above one could use the direct product
of two Bell states as a resource. Since there are four Bell states, there are 16 possibilities. Now
we could apply a binary unitary operator on two particles of these two states. For concreteness,
let us take a situation where Alice and Bob share two copies of the |ϕ+〉 states. One copy has
particles 1 and 2, and the second copy has particles 3 and 4. Let Alice have particles 1 and 3,
and Bob have particles 2 and 4. Here, particles 1 and 3 and particles 2 and 4 are not entangled.
Alice can now apply the CNOT operation on her qubits. This will entangle her qubits and one

4 See footnote 3.
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would obtain a genuine quadripartite entangled state. This state is actually an example of the
cluster state:

UCN
13 |ϕ+〉12|ϕ+〉34 = 1

2UCN
13 (|0000〉 + |0011〉 + |1100〉 + |1111〉)1234

= 1
2 (|0000〉 + |0011〉 + |1110〉 + |1101〉)1234. (9)

This is a cluster state and one can explicitly check that one can indeed use it to teleport the
two-qubit unknown state and also for maximal superdense coding [10].

Using a different unitary operator, one can also generate |χ〉 states. The UCN operator has
the following representation in the computational basis:

UCN =
(

σ0 0
0 σ1

)
. (10)

Replacing σ1 by σ3 in this matrix will give us the cluster state given in (4). The binary unitary
operator that is needed to convert |ϕ+〉|ϕ+〉 to the |χ〉 state is

Uχ = 1√
2

(
σ3 σ1

iσ2 σ0

)
. (11)

The state |�〉 and the state |χ〉 are TMESs from the point of view of the tasks of
teleportation and superdense coding. The GHZ state and the HS state are not TMESs for
these tasks, as we can check that these states are not suitable for maximal teleportation and
superdense coding. The transformations that can convert two Bell states to these states are also
not unitary; this is as it should be. The HS state can be a TMES for the task of telecloning. This
protocol requires maximized and equal bipartite correlations [13]. The HS state is designed
that way. For quantum secret sharing, |GHZ〉, |�〉 and |χ〉 states can be TMESs, but the |HS〉
state cannot.

There are many different sets of TMESs from the point of view of maximal teleportation
and superdense coding protocols. We have already seen two such sets. One set is that of
16 orthogonal cluster states, and the other is that of 16 orthogonal χ -states. These sets are
obtained from the original states by applying multi-unary unitary transformations. One can
generate different sets by applying different binary unitary operators on the product of two
Bell states. In fact one can construct 16 linearly independent binary unitary operators that act
on two qubits. So we could have 16 independent such sets. One interesting set of 16 linearly
independent operators including the CNOT unitary operator, UCN, is

1 =
(

σ0 0
0 σ1

)
, 2 =

(
σ1 0
0 σ2

)
, 3 =

(
σ2 0
0 σ3

)
, 4 =

(
σ3 0
0 σ0

)
,

5 =
(

σ0 0
0 −σ1

)
, 6 =

(
σ1 0
0 −σ2

)
, 7 =

(
σ2 0
0 −σ3

)
,

8 =
(

σ3 0
0 −σ0

)
, 9 =

(
0 σ0

σ1 0

)
, 10 =

(
0 σ1

σ2 0

)
,

11 =
(

0 σ2

σ3 0

)
, 12 =

(
0 σ3

σ0 0

)
, 13 =

(
0 σ0

−σ1 0

)
,

14 =
(

0 σ1

−σ2 0

)
, 15 =

(
0 σ2

−σ3 0

)
, 16 =

(
0 σ3

−σ0 0

)
.

If we wish all the above matrices to be real, then we can replace σ2 by iσ2 . These matrices
are the representation of the operators in the computational basis. Interestingly, all of these
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operators will generate entangled states from the product of two Bell states. Similarly, one
can obtain other sets including CNOT-like operators controlled-Y and controlled-Z:

UY =
(

σ0 0
0 σ2

)
, UZ =

(
σ0 0
0 σ3

)
. (12)

One can obtain other sets by applying unitary transformation on the above matrices.
To obtain TMESs for the six-qubit systems and beyond, one can apply the CNOT unitary

operator on two pairs of qubits. For example, if Alice has qubits 1, 3 and 5, while Bob has
qubits 2, 4 and 6, then Alice can apply UCN

13 and UCN
35 to obtain a TMES. As noted above

this TMES is not unique. One could apply any other set of binary or even a multinary unitary
operator. By applying such linearly independent unitary operators, one can generate all sets.

This process can be extended to any 2d-qubit state. In particular, one could apply CNOT
operations, or any other binary unitary operations suggested above, on suitable d − 1 pairs of
qubits. Or one may choose to apply a multinary unitary operator on any other subsets or on
all d-qubits. This procedure will give us genuinely entangled n-qubit states (n even) which
are TMESs. One way to obtain an independent set of such multinary operators is to extend
the procedure that we have used to obtain the set {a} that act on two qubits using the set {σa}
that act on one qubit. This procedure allows us to construct the matrices for (d + 1)-qubits
from those that act on d-qubits. For d = 1 and 2, we have given these matrices above. Let the
independent set of the unitary operators that act on d-qubits be {γa}, where a = 1, 2, . . . , 22d .
Then for the (d + 1)-qubits, we can construct 22d+2 linearly independent unitary matrices �a

as follows:

�1 =
(

γ1 0
0 γ2

)
, �2 =

(
γ2 0
0 γ3

)
, · · · · · · ·, �22d−1 =

(
γ22d−1 0

0 γ22d

)
,

�22d =
(

γ22d 0
0 γ1

)
, �22d +1 =

(
γ1 0
0 −γ2

)
, �22d +2 =

(
γ2 0
0 −γ3

)
, · · · · · · ·,

�22d+1−1 =
(

γ22d−1 0
0 −γ22d

)
, �22d+1 =

(
γ22d 0
0 −γ1

)
,

�22d+1+1 =
(

0 γ1

γ2 0

)
, �22d+1+2 =

(
0 γ2

γ3 0

)
, · · · · · · · ·,

�3×22d−1 =
(

0 γ22d−1

γ22d 0

)
, �3×22d =

(
0 γ22d

γ1 0

)
,

�3×22d +1 =
(

0 γ1

−γ2 0

)
, �3×22d +2 =

(
0 γ2

−γ3 0

)
, · · · · · · ·,

�22d+2−1 =
(

0 γ22d−1

−γ22d 0

)
, �22d+2 =

(
0 γ22d

−γ1 0

)
.

It is our conjecture that using this procedure, one can, in principle, generate all suitable
states that can be a quantum resource in teleporting an arbitrary and unknown d-qubit state
and for superdense coding, i.e., carrying out the tasks maximally.

3. TMESs for an odd number of qubits

For the systems with an odd number of qubits, the first non-trivial system is that of three
qubits. None of the three-qubit states can be used to teleport an unknown arbitrary two-qubit
state [22]. This is also clear from the fact that the construction of this state requires only one
Bell state, as we shall see below. Furthermore since the Hilbert space of a three-qubit system

6
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is only eight dimensional, one cannot transmit four cbits by transmitting two qubits. At most
three cbits could be transmitted. To obtain a TMES for 2d + 1 qubits, one can start with
the tensor product of d Bell states and a computational basis state. In the case of three-qubit
system, e.g., we could have

UCN
13 |ϕ+〉12|0〉3 = 1√

2
UCN

13 (|000〉123 + |110〉123)

= 1√
2
(|000〉123 + |111〉123). (13)

This is a GHZ state. For a three-qubit system it is a TMES for the tasks of superdense
coding and teleportation. We note there exists a subclass of W-states [23] which can also be
used for teleportation:

|Wn〉 = 1√
2 + 2n

(|100〉 +
√

n|010〉 +
√

n + 1|001〉). (14)

Since this state can be used for the maximal teleportation, one should be able to obtain
it after applying suitable multinary unitary transformations on |ϕ+〉|0〉. For example this
transformation for the |W2〉 state is

UW2 =

⎛
⎜⎜⎜⎝

0 1√
2

1√
2

0

0 0 0 1
1 0 0 0
0 1√

2
−1√

2
0

⎞
⎟⎟⎟⎠ . (15)

This state is also suitable for transmitting three cbits by sending two qubits, but not for all
2 − 1 partitions of three qubits. Since our definition of the maximal superdense coding does
not have any requirement for partitions, this state is also a TMES. We note that the product
state |ϕ+〉|0〉 can be used for maximal superdense coding also.

Let us now consider a system of five qubits. For such a system TMES would not be a GHZ
state [10]. However, we can obtain TMESs by applying appropriate unitary transformations
on the product state of two Bell states and a computational basis state. One way is

UCN
13 UCN

35 |ϕ+〉12|ϕ+〉34|0〉5 = 1
2UCN

13 UCN
35 (|00000〉 + |00110〉 + |11000〉 + |11110〉)12345

= UCN
35

1
2 (|00000〉 + |00110〉 + |11100〉 + |11010〉)12345

= 1
2 (|00000〉 + |00111〉 + |11101〉 + |11010〉)12345. (16)

This state is a TMES for a five-qubit system corresponding to the tasks of teleportation
and superdense coding. This is because it can be used for maximal superdense coding and
teleportation. One can teleport an unknown arbitrary two-qubit state and transmit five cbits
by sending three qubits. This is also an example of cluster state for five qubits. As discussed
in the case of an even number of qubit system, this state is not unique. By applying multi-
unary unitary transformations on three qubits, one can obtain 32 orthogonal states, which will
serve the same purpose. Furthermore, by applying linearly independent multinary unitary
transformations, given in the last section, one can obtain linearly independent sets of TMESs.
By maximizing negativity numerically, Brown et al [20] have obtained a ‘highly entangled’
five-qubit state. Their state is a TMES for our tasks. One can obtain it by applying an
appropriate multinary unitary transformation. This state does not have all maximized bipartite
correlations.

One can generalize this procedure to any odd number of qubit system. So for a 2d + 1
qubit system, one has to consider the product state of d Bell states and a one-qubit state and
apply a suitable multinary unitary transformation. This will make the 2d + 1 qubits genuinely
entangled. This can serve as the resource for maximal teleportation and superdense coding.
In the last section we have given a more detailed procedure and sets of unitary matrices that
can be used for the transformations.

7
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4. Conclusions

We have argued that the universal maximally entangled state in the case of multipartite systems
may not be generally useful, even if such a state could be identified. Instead the notion of a
TMES may be more fruitful. A TMES for a given task is the state that can carry out the task
maximally. This makes the notion of maximally entangled states task dependent. For different
tasks, different states may allow us to carry out the task maximally. We have illustrated this
idea on the basis of the communication tasks of teleportation and superdense coding. To this
end, we have given a strategy to obtain instances of the TMESs corresponding to these tasks.
We conjecture that using our procedure one would be able to obtain all states that may be
suitable for the maximal teleportation and superdense coding. Similarly, for other tasks, one
may obtain the suitable TMESs.
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